Contribute to qdrant/mcp-server-qdrant development by creating an account on GitHub.
Description:
A semantic memory server using Qdrant vector search engine for storing and retrieving context
Category: Vector Storage & Retrieval
Overview:
This server implementation provides a semantic memory layer powered by Qdrant vector search engine. It offers two main functionalities:
Key features:
Installation & Usage:
Using uv (recommended):
uv run mcp-server-qdrant \
--qdrant-url "http://localhost:6333" \
--qdrant-api-key "your_api_key" \
--collection-name "my_collection" \
--fastembed-model-name "sentence-transformers/all-MiniLM-L6-v2"
Via Smithery:
npx @smithery/cli install mcp-server-qdrant --client claude
Configuration:
{
"qdrant": {
"command": "uvx",
"args": [
"mcp-server-qdrant",
"--qdrant-url",
"http://localhost:6333",
"--qdrant-api-key",
"your_api_key",
"--collection-name",
"your_collection_name"
]
}
}
Environment Variables:
Note: QDRANT_URL and QDRANT_LOCAL_PATH are mutually exclusive